Local, smooth, and consistent Jacobi set simplification

نویسندگان

  • Harsh Bhatia
  • Bei Wang
  • Gregory Norgard
  • Valerio Pascucci
  • Peer-Timo Bremer
چکیده

The relation between two Morse functions defined on a common domain can be studied in terms of their Jacobi set. The Jacobi set contains points in the domain where the gradients of the functions are aligned. Both the Jacobi set itself as well as the segmentation of the domain it induces have shown to be useful in various applications. Unfortunately, in practice functions often contain noise and discretization artifacts causing their Jacobi set to become unmanageably large and complex. While there exist techniques to simplify Jacobi sets, these are unsuitable for most applications as they lack fine-grained control over the process and heavily restrict the type of simplifications possible. In this paper, we introduce a new framework that generalizes critical point cancellations in scalar functions to Jacobi sets in two dimensions. We focus on simplifications that can be realized by smooth approximations of the corresponding functions and show how this implies simultaneously simplifying contiguous subsets of the Jacobi set. These extended cancellations form the atomic operations in our framework, and we introduce an algorithm to successively cancel subsets of the Jacobi set with minimal modifications according to some user-defined metric. We prove that the algorithm is correct and terminates only once no more local, smooth and consistent simplifications are possible. We disprove a previous claim on the minimal Jacobi set for manifolds with arbitrary genus and show that for simply connected domains, our algorithm reduces a given Jacobi set to its simplest configuration. ar X iv :1 30 7. 77 52 v1 [ cs .C G ] 2 9 Ju l 2 01 3

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simplification of Jacobi Sets

The Jacobi set of two Morse functions defined on a 2-manifold is the collection of points where the gradients of the functions align with each other or where one of the gradients vanish. It describes the relationship between functions defined on the same domain, and hence plays an important role in multi-field visualization. The Jacobi set of two piecewise linear functions may contain several c...

متن کامل

Multivariate topology simplification

Topological simplification of scalar and vector fields is wellestablished as an effective method for analysing and visualising complex data sets. For multi-field data, topological analysis requires simultaneous advances both mathematically and computationally. We propose a robust multivariate topology simplification method based on “lip”-pruning from the Reeb Space. Mathematically, we show that...

متن کامل

On Existence and Uniqueness Verification for Non-Smooth Functions

It is known that interval Newton methods can verify existence and uniqueness of solutions of a nonlinear system of equations near points where the Jacobi matrix of the system is not ill-conditioned. Recently, we have shown how to verify existence and uniqueness, up to multiplicity, for solutions at which the Jacobi matrix is singular. We do this by efficient computation of the topological index...

متن کامل

Globally convergent Jacobi-type algorithms for simultaneous orthogonal symmetric tensor diagonalization

In this paper, we consider a family of Jacobi-type algorithms for simultaneous orthogonal diagonalization problem of symmetric tensors. For the Jacobi-based algorithm of [SIAM J. Matrix Anal. Appl., 2(34):651–672, 2013], we prove its global convergence for simultaneous orthogonal diagonalization of symmetric matrices and 3rd-order tensors. We also propose a new Jacobi-based algorithm in the gen...

متن کامل

Harmonic Morphisms and the Jacobi Operator

We prove that harmonic morphisms preserve the Jacobi operator along harmonic maps. We apply this result to prove infinitesimal and local rigidity (in the sense of Toth) of harmonic morphisms to a sphere. 1. Harmonic morphisms Harmonic maps φ : (M, g) → (N, h) between two smooth Riemannian manifolds are critical points of the energy functional E(φ,Ω) = 1 2 ∫ Ω |dφ| dvg for any compact domain Ω ⊆...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Comput. Geom.

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2015